Source code for pytorch_tutorials.transforms

from typing import Dict, List, Optional, Tuple, Union

import torch
import torchvision
from torch import Tensor, nn
from torchvision import ops
from torchvision.transforms import InterpolationMode
from torchvision.transforms import functional as F
from torchvision.transforms import transforms as T


def _flip_coco_person_keypoints(kps, width):
    flip_inds = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
    flipped_data = kps[:, flip_inds]
    flipped_data[..., 0] = width - flipped_data[..., 0]
    # Maintain COCO convention that if visibility == 0, then x, y = 0
    inds = flipped_data[..., 2] == 0
    flipped_data[inds] = 0
    return flipped_data


[docs] class Compose: def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target
[docs] class RandomHorizontalFlip(T.RandomHorizontalFlip):
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: if torch.rand(1) < self.p: image = F.hflip(image) if target is not None: _, _, width = F.get_dimensions(image) target["boxes"][:, [0, 2]] = width - target["boxes"][:, [2, 0]] if "masks" in target: target["masks"] = target["masks"].flip(-1) if "keypoints" in target: keypoints = target["keypoints"] keypoints = _flip_coco_person_keypoints(keypoints, width) target["keypoints"] = keypoints return image, target
[docs] class PILToTensor(nn.Module):
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: image = F.pil_to_tensor(image) return image, target
[docs] class ToDtype(nn.Module): def __init__(self, dtype: torch.dtype, scale: bool = False) -> None: super().__init__() self.dtype = dtype self.scale = scale
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: if not self.scale: return image.to(dtype=self.dtype), target image = F.convert_image_dtype(image, self.dtype) return image, target
[docs] class RandomIoUCrop(nn.Module): def __init__( self, min_scale: float = 0.3, max_scale: float = 1.0, min_aspect_ratio: float = 0.5, max_aspect_ratio: float = 2.0, sampler_options: Optional[List[float]] = None, trials: int = 40, ): super().__init__() # Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174 self.min_scale = min_scale self.max_scale = max_scale self.min_aspect_ratio = min_aspect_ratio self.max_aspect_ratio = max_aspect_ratio if sampler_options is None: sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] self.options = sampler_options self.trials = trials
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: if target is None: raise ValueError("The targets can't be None for this transform.") if isinstance(image, torch.Tensor): if image.ndimension() not in {2, 3}: raise ValueError( f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions." ) elif image.ndimension() == 2: image = image.unsqueeze(0) _, orig_h, orig_w = F.get_dimensions(image) while True: # sample an option idx = int(torch.randint(low=0, high=len(self.options), size=(1, ))) min_jaccard_overlap = self.options[idx] if min_jaccard_overlap >= 1.0: # a value larger than 1 encodes the leave as-is option return image, target for _ in range(self.trials): # check the aspect ratio limitations r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2) new_w = int(orig_w * r[0]) new_h = int(orig_h * r[1]) aspect_ratio = new_w / new_h if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio): continue # check for 0 area crops r = torch.rand(2) left = int((orig_w - new_w) * r[0]) top = int((orig_h - new_h) * r[1]) right = left + new_w bottom = top + new_h if left == right or top == bottom: continue # check for any valid boxes with centers within the crop area cx = 0.5 * (target["boxes"][:, 0] + target["boxes"][:, 2]) cy = 0.5 * (target["boxes"][:, 1] + target["boxes"][:, 3]) is_within_crop_area = (left < cx) & (cx < right) & ( top < cy) & (cy < bottom) if not is_within_crop_area.any(): continue # check at least 1 box with jaccard limitations boxes = target["boxes"][is_within_crop_area] ious = torchvision.ops.boxes.box_iou( boxes, torch.tensor([[left, top, right, bottom]], dtype=boxes.dtype, device=boxes.device)) if ious.max() < min_jaccard_overlap: continue # keep only valid boxes and perform cropping target["boxes"] = boxes target["labels"] = target["labels"][is_within_crop_area] target["boxes"][:, 0::2] -= left target["boxes"][:, 1::2] -= top target["boxes"][:, 0::2].clamp_(min=0, max=new_w) target["boxes"][:, 1::2].clamp_(min=0, max=new_h) image = F.crop(image, top, left, new_h, new_w) return image, target
[docs] class RandomZoomOut(nn.Module): def __init__(self, fill: Optional[List[float]] = None, side_range: Tuple[float, float] = (1.0, 4.0), p: float = 0.5): super().__init__() if fill is None: fill = [0.0, 0.0, 0.0] self.fill = fill self.side_range = side_range if side_range[0] < 1.0 or side_range[0] > side_range[1]: raise ValueError( f"Invalid canvas side range provided {side_range}.") self.p = p @torch.jit.unused def _get_fill_value(self, is_pil): # type: (bool) -> int # We fake the type to make it work on JIT return tuple(int(x) for x in self.fill) if is_pil else 0
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: if isinstance(image, torch.Tensor): if image.ndimension() not in {2, 3}: raise ValueError( f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions." ) elif image.ndimension() == 2: image = image.unsqueeze(0) if torch.rand(1) >= self.p: return image, target _, orig_h, orig_w = F.get_dimensions(image) r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0]) canvas_width = int(orig_w * r) canvas_height = int(orig_h * r) r = torch.rand(2) left = int((canvas_width - orig_w) * r[0]) top = int((canvas_height - orig_h) * r[1]) right = canvas_width - (left + orig_w) bottom = canvas_height - (top + orig_h) if torch.jit.is_scripting(): fill = 0 else: fill = self._get_fill_value(F._is_pil_image(image)) image = F.pad(image, [left, top, right, bottom], fill=fill) if isinstance(image, torch.Tensor): # PyTorch's pad supports only integers on fill. So we need to overwrite the colour v = torch.tensor(self.fill, device=image.device, dtype=image.dtype).view(-1, 1, 1) image[..., :top, :] = image[..., :, :left] = image[..., ( top + orig_h):, :] = image[..., :, (left + orig_w):] = v if target is not None: target["boxes"][:, 0::2] += left target["boxes"][:, 1::2] += top return image, target
[docs] class RandomPhotometricDistort(nn.Module): def __init__( self, contrast: Tuple[float, float] = (0.5, 1.5), saturation: Tuple[float, float] = (0.5, 1.5), hue: Tuple[float, float] = (-0.05, 0.05), brightness: Tuple[float, float] = (0.875, 1.125), p: float = 0.5, ): super().__init__() self._brightness = T.ColorJitter(brightness=brightness) self._contrast = T.ColorJitter(contrast=contrast) self._hue = T.ColorJitter(hue=hue) self._saturation = T.ColorJitter(saturation=saturation) self.p = p
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: if isinstance(image, torch.Tensor): if image.ndimension() not in {2, 3}: raise ValueError( f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions." ) elif image.ndimension() == 2: image = image.unsqueeze(0) r = torch.rand(7) if r[0] < self.p: image = self._brightness(image) contrast_before = r[1] < 0.5 if contrast_before: if r[2] < self.p: image = self._contrast(image) if r[3] < self.p: image = self._saturation(image) if r[4] < self.p: image = self._hue(image) if not contrast_before: if r[5] < self.p: image = self._contrast(image) if r[6] < self.p: channels, _, _ = F.get_dimensions(image) permutation = torch.randperm(channels) is_pil = F._is_pil_image(image) if is_pil: image = F.pil_to_tensor(image) image = F.convert_image_dtype(image) image = image[..., permutation, :, :] if is_pil: image = F.to_pil_image(image) return image, target
[docs] class ScaleJitter(nn.Module): """Randomly resizes the image and its bounding boxes within the specified scale range. The class implements the Scale Jitter augmentation as described in the paper `"Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" <https://arxiv.org/abs/2012.07177>`_. Args: target_size (tuple of ints): The target size for the transform provided in (height, weight) format. scale_range (tuple of ints): scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b. interpolation (InterpolationMode): Desired interpolation enum defined by :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. """ def __init__( self, target_size: Tuple[int, int], scale_range: Tuple[float, float] = (0.1, 2.0), interpolation: InterpolationMode = InterpolationMode.BILINEAR, antialias=True, ): super().__init__() self.target_size = target_size self.scale_range = scale_range self.interpolation = interpolation self.antialias = antialias
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: if isinstance(image, torch.Tensor): if image.ndimension() not in {2, 3}: raise ValueError( f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions." ) elif image.ndimension() == 2: image = image.unsqueeze(0) _, orig_height, orig_width = F.get_dimensions(image) scale = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0]) r = min(self.target_size[1] / orig_height, self.target_size[0] / orig_width) * scale new_width = int(orig_width * r) new_height = int(orig_height * r) image = F.resize(image, [new_height, new_width], interpolation=self.interpolation, antialias=self.antialias) if target is not None: target["boxes"][:, 0::2] *= new_width / orig_width target["boxes"][:, 1::2] *= new_height / orig_height if "masks" in target: target["masks"] = F.resize( target["masks"], [new_height, new_width], interpolation=InterpolationMode.NEAREST, antialias=self.antialias, ) return image, target
[docs] class FixedSizeCrop(nn.Module): def __init__(self, size, fill=0, padding_mode="constant"): super().__init__() size = tuple( T._setup_size( size, error_msg="Please provide only two dimensions (h, w) for size." )) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill # TODO: Fill is currently respected only on PIL. Apply tensor patch. self.padding_mode = padding_mode def _pad(self, img, target, padding): # Taken from the functional_tensor.py pad if isinstance(padding, int): pad_left = pad_right = pad_top = pad_bottom = padding elif len(padding) == 1: pad_left = pad_right = pad_top = pad_bottom = padding[0] elif len(padding) == 2: pad_left = pad_right = padding[0] pad_top = pad_bottom = padding[1] else: pad_left = padding[0] pad_top = padding[1] pad_right = padding[2] pad_bottom = padding[3] padding = [pad_left, pad_top, pad_right, pad_bottom] img = F.pad(img, padding, self.fill, self.padding_mode) if target is not None: target["boxes"][:, 0::2] += pad_left target["boxes"][:, 1::2] += pad_top if "masks" in target: target["masks"] = F.pad(target["masks"], padding, 0, "constant") return img, target def _crop(self, img, target, top, left, height, width): img = F.crop(img, top, left, height, width) if target is not None: boxes = target["boxes"] boxes[:, 0::2] -= left boxes[:, 1::2] -= top boxes[:, 0::2].clamp_(min=0, max=width) boxes[:, 1::2].clamp_(min=0, max=height) is_valid = (boxes[:, 0] < boxes[:, 2]) & (boxes[:, 1] < boxes[:, 3]) target["boxes"] = boxes[is_valid] target["labels"] = target["labels"][is_valid] if "masks" in target: target["masks"] = F.crop(target["masks"][is_valid], top, left, height, width) return img, target
[docs] def forward(self, img, target=None): _, height, width = F.get_dimensions(img) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) if new_height != height or new_width != width: offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) img, target = self._crop(img, target, top, left, new_height, new_width) pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) if pad_bottom != 0 or pad_right != 0: img, target = self._pad(img, target, [0, 0, pad_right, pad_bottom]) return img, target
[docs] class RandomShortestSize(nn.Module): def __init__( self, min_size: Union[List[int], Tuple[int], int], max_size: int, interpolation: InterpolationMode = InterpolationMode.BILINEAR, ): super().__init__() self.min_size = [min_size] if isinstance(min_size, int) else list(min_size) self.max_size = max_size self.interpolation = interpolation
[docs] def forward( self, image: Tensor, target: Optional[Dict[str, Tensor]] = None ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: _, orig_height, orig_width = F.get_dimensions(image) min_size = self.min_size[torch.randint(len(self.min_size), (1, )).item()] r = min(min_size / min(orig_height, orig_width), self.max_size / max(orig_height, orig_width)) new_width = int(orig_width * r) new_height = int(orig_height * r) image = F.resize(image, [new_height, new_width], interpolation=self.interpolation) if target is not None: target["boxes"][:, 0::2] *= new_width / orig_width target["boxes"][:, 1::2] *= new_height / orig_height if "masks" in target: target["masks"] = F.resize( target["masks"], [new_height, new_width], interpolation=InterpolationMode.NEAREST) return image, target
def _copy_paste( image: torch.Tensor, target: Dict[str, Tensor], paste_image: torch.Tensor, paste_target: Dict[str, Tensor], blending: bool = True, resize_interpolation: F.InterpolationMode = F.InterpolationMode.BILINEAR, ) -> Tuple[torch.Tensor, Dict[str, Tensor]]: # Random paste targets selection: num_masks = len(paste_target["masks"]) if num_masks < 1: # Such degerante case with num_masks=0 can happen with LSJ # Let's just return (image, target) return image, target # We have to please torch script by explicitly specifying dtype as torch.long random_selection = torch.randint(0, num_masks, (num_masks, ), device=paste_image.device) random_selection = torch.unique(random_selection).to(torch.long) paste_masks = paste_target["masks"][random_selection] paste_boxes = paste_target["boxes"][random_selection] paste_labels = paste_target["labels"][random_selection] masks = target["masks"] # We resize source and paste data if they have different sizes # This is something we introduced here as originally the algorithm works # on equal-sized data (for example, coming from LSJ data augmentations) size1 = image.shape[-2:] size2 = paste_image.shape[-2:] if size1 != size2: paste_image = F.resize(paste_image, size1, interpolation=resize_interpolation) paste_masks = F.resize(paste_masks, size1, interpolation=F.InterpolationMode.NEAREST) # resize bboxes: ratios = torch.tensor((size1[1] / size2[1], size1[0] / size2[0]), device=paste_boxes.device) paste_boxes = paste_boxes.view(-1, 2, 2).mul(ratios).view(paste_boxes.shape) paste_alpha_mask = paste_masks.sum(dim=0) > 0 if blending: paste_alpha_mask = F.gaussian_blur( paste_alpha_mask.unsqueeze(0), kernel_size=(5, 5), sigma=[ 2.0, ], ) # Copy-paste images: image = (image * (~paste_alpha_mask)) + (paste_image * paste_alpha_mask) # Copy-paste masks: masks = masks * (~paste_alpha_mask) non_all_zero_masks = masks.sum((-1, -2)) > 0 masks = masks[non_all_zero_masks] # Do a shallow copy of the target dict out_target = {k: v for k, v in target.items()} out_target["masks"] = torch.cat([masks, paste_masks]) # Copy-paste boxes and labels boxes = ops.masks_to_boxes(masks) out_target["boxes"] = torch.cat([boxes, paste_boxes]) labels = target["labels"][non_all_zero_masks] out_target["labels"] = torch.cat([labels, paste_labels]) # Update additional optional keys: area and iscrowd if exist if "area" in target: out_target["area"] = out_target["masks"].sum( (-1, -2)).to(torch.float32) if "iscrowd" in target and "iscrowd" in paste_target: # target['iscrowd'] size can be differ from mask size (non_all_zero_masks) # For example, if previous transforms geometrically modifies masks/boxes/labels but # does not update "iscrowd" if len(target["iscrowd"]) == len(non_all_zero_masks): iscrowd = target["iscrowd"][non_all_zero_masks] paste_iscrowd = paste_target["iscrowd"][random_selection] out_target["iscrowd"] = torch.cat([iscrowd, paste_iscrowd]) # Check for degenerated boxes and remove them boxes = out_target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): valid_targets = ~degenerate_boxes.any(dim=1) out_target["boxes"] = boxes[valid_targets] out_target["masks"] = out_target["masks"][valid_targets] out_target["labels"] = out_target["labels"][valid_targets] if "area" in out_target: out_target["area"] = out_target["area"][valid_targets] if "iscrowd" in out_target and len( out_target["iscrowd"]) == len(valid_targets): out_target["iscrowd"] = out_target["iscrowd"][valid_targets] return image, out_target
[docs] class SimpleCopyPaste(torch.nn.Module): def __init__(self, blending=True, resize_interpolation=F.InterpolationMode.BILINEAR): super().__init__() self.resize_interpolation = resize_interpolation self.blending = blending
[docs] def forward( self, images: List[torch.Tensor], targets: List[Dict[str, Tensor]] ) -> Tuple[List[torch.Tensor], List[Dict[str, Tensor]]]: torch._assert( isinstance(images, (list, tuple)) and all([isinstance(v, torch.Tensor) for v in images]), "images should be a list of tensors", ) torch._assert( isinstance(targets, (list, tuple)) and len(images) == len(targets), "targets should be a list of the same size as images", ) for target in targets: # Can not check for instance type dict with inside torch.jit.script # torch._assert(isinstance(target, dict), "targets item should be a dict") for k in ["masks", "boxes", "labels"]: torch._assert(k in target, f"Key {k} should be present in targets") torch._assert(isinstance(target[k], torch.Tensor), f"Value for the key {k} should be a tensor") # images = [t1, t2, ..., tN] # Let's define paste_images as shifted list of input images # paste_images = [t2, t3, ..., tN, t1] # FYI: in TF they mix data on the dataset level images_rolled = images[-1:] + images[:-1] targets_rolled = targets[-1:] + targets[:-1] output_images: List[torch.Tensor] = [] output_targets: List[Dict[str, Tensor]] = [] for image, target, paste_image, paste_target in zip( images, targets, images_rolled, targets_rolled): output_image, output_data = _copy_paste( image, target, paste_image, paste_target, blending=self.blending, resize_interpolation=self.resize_interpolation, ) output_images.append(output_image) output_targets.append(output_data) return output_images, output_targets
def __repr__(self) -> str: s = f"{self.__class__.__name__}(blending={self.blending}, resize_interpolation={self.resize_interpolation})" return s